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Description

We are given a time series, which has only background noise at the beginning. The parameters of the
noise are unknown. At some time t0 a signal arrives. The quantities of interest are

• the time tarr , the time of arrival of the signal.

• the peak strength of the signal

• the time tpeak at which the peak of the signal arrives

The algorithm is as follows:
Find ipeak, the time at which the signal is at peak strength. From now on consider only the subset

y1, y2, . . . , ypeak .
For each 1 ≤ k ≤ ipeak , calculate the following quantities

mk = slope of regression line through (1, y1), (2, y2), . . . , (ipeak , ypeak )
σk = standard deviation of y1, y2, · · · ypeak

sk =
√

(k2 − 1) ∗m2
k + σ2

n

Plot the points (k, sk) for 1, . . . , ipeak . The points should be approximately constant until the
signal arrives, at which point it begins to increase. Because of randomness in the background noise
and complexity of the signal, there will likely be several points at which sn locally has this behavior.
We pick a single sn in the following way.

Compute the convex hull of the points (k, sk); the point in question will be one of the vertices on
the hull; in particular it will be one of the vertices where the convex hull is below the graph. For
each pair of adjacent vertices (k1, sk1) and (k2, sk2) that satisfy this property, we extrapolate the line
between these two points, and observe how far below (it must lie below the rest of the graph) the next
vertex (k3, sk3). We compute the percentage amount by which sk3 lies farther above the x-axis than
the line does at x = k3. The percentage increase is divided by k3 − k2 to obtain a relative rate of
increase in y

Do this for each vertex on the convex hull that lies below the graph. The vertex for which this
relative rate of increase is a maximum, is taken to correspond to the arrival of the signal.

Mathematical Principles

The routine is based on the assumption that the time series data behaves like Gaussian noise for some
period of time, until the arrival of a signal whose peak amplitude is greater than the amplitude of the
background noise. It attempts to give an answer to the question of when the time series ceases to
behave like Gaussian noise. We do not make any a priori assumptions on the mean or variance of the
Gaussian noise.

Suppose we have a time series of data points {y1, . . . , yn}, generated by Gaussian noise. For
simplicity, assume that the distribution has mean 0 and variance 1. A graph of the time series should
show that the values are clustered around the line y = 0, but are randomly above and below this line.
Doing statistics on the points in the time series, we expect two things.

First, that the line of least-squares fit should be very close to y = 0. In particular, the slope should
be close to zero. We can quantify this statement by observing that the slope

m =
nΣxiyi − (Σxi) (Σyi)

nΣx2
i − (Σxi)

2
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is a linear combination of the normally distributed random variables xi. If xi = i, then m is a Gaussian
random variable with mean zero and standard deviation√

12
n2 − 1

.

Define mn to be the slope of the least-squares line for the first n points. Then the quantity
pn = mn

√
n2 − 1 has normal distribution, with mean zero and standard deviation that does not

depend on n. However, the plot of these values will not look like typical Gaussian noise, because the
collection of mn are not independent. Instead, they are the outcome of a random walk with smaller
and smaller steps as n gets larger and larger. In this way, the plot of pn becomes much less jagged
than the plot of yn as n increases. (figure 1).
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Figure 1: Comparison of the smoothness of the original data with that of pn. Left: Gaussian noise
with mean zero and unit variance. Right: Slope of pn, as a function of n.

Second, that the sample standard deviation should be very close to σ = 1. If σn is the sample
standard deviation of the first n points, then σ2

n is a random variable with mean 1. However, the σn

are not independent for different n, so that the variation for large n will be tamer than that for yn.
Thus we see that as long as the values of the time series are given by a Gaussian noise process, the

quantities σn and yn behave in a predictable manner.
What then happens when the signal arrives? Since we are assuming that the signal has greater

amplitude than the typical values of the noise, we expect the standard deviation to begin increasing
at the onset of the signal. Also, the presence of the signal forces several successive data points to be
either all above or all below the background noise level. The result of this effect is that mn will start
to drift away from zero. We therefore expect to see that when the signal arrives, both σn and mn will
behave differently than they had before the signal arrived.

The algorithm works by detecting when the regression slopes and standard deviations stop behaving
like those of Gaussian noise. It makes sense to consider both mn and σn together. Since the signal can
oscillate around the mean level of the background noise, it is quite common for mn to oscillate back
and forth between positive and negative values, and attain values close to zero for certain values of n.
This tendency makes it difficult to deal with σn alone. On the other hand, changes in the slopes can
be more readily apparent than changes is the standard deviations, so that it might be harder to pick
out the signal arrival if we were only to use the standard deviations.

We therefore will work with the expression

sn =
√

σ2
n + p2

n,

which will be referred to as the “signal detection function.”
The first step in the algorithm is identify the peak signal strength. In identifying the peak signal

it is important to remember that we cannot assume that the equilibrium position of the time series
would be zero in the absence of noise and signal. Instead, we use the value of the first data point in the
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time series as an easy approximation to the correct level, and look for the peak signal relative to y1.
The value that is returned as peak is the maximum over j of |yj − y1|. The first value of j that gives
this maximum is the output variable ipeak.

If we plot the values of sn, we expect the sequence to be relatively flat while there is only background
noise, and then increase (since the standard deviation will increase, and m is expected to depart from
zero.) In figure 2, there is Gaussian noise for the first 100 data points, and then a signal arrives at
time 100 that is sinusoidal in shape. Note that the graph of pn makes a sharper transition than that
of the raw data.
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Figure 2: Comparison of the smoothness of the original data with that of pn. Left: Gaussian noise
with mean zero and variance 1. Right: Slope of pn, as a function of n.

It is pretty clear from figure 2 where one would assign the signal arrival. The point in question is
the point on the graph that “sticks out” the most. In this way we are geometrically led to consider
the convex hull of the graph of the sn’s.

To decide which vertex on the convex hull we should take, we make the following observations. First,
the choice of signal arrival should not depend on what units we use to measure s. Therefore s-values
should be compared only to s-values, which means that we cannot consider angles or approximate
curvature of the convex hull. Instead, we are forced to consider ratios between different s-values.

Suppose that (k1, s1), (k2, s2), and (k3, s3) are consecutive vertices, with k1 < k2 < k3 of the convex
hull of the graph of sn, and that all three vertices lie below the graph. By convexity, the slope of the
line from k1 to k2 must be less than that from k2 to k3. Extrapolate the first line to locate the point
(k3, q), where q < s3. Now the s-values are all positive. At times before the signal has not yet arrived,
we expect the s-values to change relatively little, so that s3 lies very close to the extrapolated line.
Once the signal arrives, the rate of increase of the s-values should pick up, so that s3 is relatively far
from the extrapolated line. We compute the relative change in s-value, (s3 − q)/q. Since we expect
this value to be larger if k2 and k3 are far apart and smaller if they are close together, we normalize
by dividing by k3−k2. This quantity is computed for each vertex on the lower part of the convex hull,
and the k2 for the largest such value is chosen as the time of arrival.

Physical and Engineering Principles

As a means of providing validation for the arrival time algorithms, the ESA team provided estimates of
times of arrival for sixteen experimental datasets. These estimates were obtained by visual inspection of
the graph of the time series. Figure 3 shows the results of both the ESA opinion and the arrivaltime.m
algorithm. In the majority of cases, the agreement is five data points or fewer. In a couple cases the
discrepancy appears quite sizable; however a visual inspection of the data in these cases shows that
there is an apparent change in the data at the time identified by arrivaltime.m

For example, look at the data for SG803T13RAW, the experiment for which the discrepancy was
the largest (figure 4). Both results identify a point where the data begins increasing and then oscillating
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Dataset ESA estimate arrivaltime.m Difference
AC002T13RAW 990 989 1
AC002T23RAW 1086 1097 -11
AC002T33RAW 1123 1116 7
AC002T43RAW 1088 1111 -23
SG801T13RAW 551 551 0
SG801T23RAW 550 555 -5
SG801T33RAW 550 550 0
SG801T43RAW 600 599 1
SG802T13RAW 504 519 -15
SG802T23RAW 513 515 -2
SG802T33RAW 503 513 -10
SG802T43RAW 570 565 5
SG803T13RAW 483 508 -25
SG803T23RAW 479 482 -3
SG803T33RAW 479 477 2
SG803T43RAW 528 528 0

Figure 3: Comparison of ESA expert opinions and arrivaltime.m for sixteen experimental datasets

with greater and greater amplitude. They differ, however, in which increase marks the signal and which
is the end of the pure background noise.
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Figure 4: Accelerometer data showing different answers to the arrival time question. The left vertical
line indicates the ESA opinion; the right one, the output of arrivaltime.m. The data between these
marks could be interpreted as the start of the signal, or it could be interpreted as a statistical blip

The algorithm works best when the signal grows to peak amplitude at a moderate rate. If the
growth is too slow, the increase in the regression slope and the standard deviation is slow enough
that it is difficult to see. If the growth is too rapid too early, the routine of picking out the greatest
increase will tend to pick the point of maximum growth instead of the onset of the signal. This
explains the discrepancy for SG803T13RAW (figure 5), the dataset that gave the biggest discrepancy
of 25 datapoints. Figure 6 shows a portion of the graph of the signal detection function and its convex
hull. The prime choices for the signal onset are at t = 484 and at t = 508. The former would give
excellent agreement with the ESA opinion; however due to the rapid increase in the signal beginning
at t ≈ 503, the algorithm finds t = 508 to be more significant.

Usage

The matlab command arrivaltime has the following syntax:
[iarr,peak,ipeak,out] = arrivaltime(dvec,doplot)
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Figure 5: Strain gauge data showing the effect of early quick growth of the signal amplitude. The
left vertical line indicates the ESA opinion; the right vertical line is the output of arrivaltime.m Here
the rapid change at t = 508 causes the algorithm to interpret any prior variations in the data as
insignificant.
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Figure 6: Signal detection function and convex hull for data set SG803T13RAW. The candidates for
signal onset are marked by vertical lines.

INPUT:
dvec the vector containing the time series
doplot a string that indicates whether to draw plots. Setting doplot to

‘plot‘ draws illustrative plots. If doplot is anything else, do
not draw plots. The default is not to draw plots.

OUTPUT:
iarr the index into dvec corresponding to the time the signal arrived.
peak the largest amplitude of the signal
ipeak the index into dvec corresponding to the time the peak of the signal

arrived.
out an ipeak-by-3 matrix.

Column 1 contains standard deviations
Column 2 contains slopes of the linear regression lines
Column 3 contains the signal detection function

At present, the algorithm has no parameters that affect the output. The parameter ‘doplot’ controls
whether graphics are produced. If ‘doplot‘ is set to ‘plot‘, the routine produces two figures, generated
in figure 1 and figure 2.
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Figure 1 draws the time series. Figure 2 plots the signal detection function (see the section Mathe-
matical Principles) and its convex hull. This figure illustrates which times were considered as candidates
for the time of arrival. It can show the user whether there are any close misses.
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